
RISC-V Barrel Processor for Accelerator Control

MohammadHossein AskariHemmat∗, Olexa Bilaniuk†, Sean Wagner‡, Yvon Savaria∗, Jean-Pierre David∗

∗Electrical Engineering Department, Ecole Polytechnique Montreal, Quebec, Canada,

{mohammadhossein.askari-hemmat, jean-pierre.david, yvon.savaria }polymtl.ca
†Mila, University of Montreal, Montreal, Quebec, Canada, olexa.bilaniuk@mila.quebec

‡IBM Canada, Markham, Ontario, Canada, wagnerse@ca.ibm.com

Hardware accelerators are important in the post-Moore’s

law era of computing. To maximize performance of such

accelerators, most of the logic resources should be allocated

to their execution circuits, while control mechanisms should

be kept small yet flexible. In this paper, we propose a barrel

processor design based on the RISC-V instruction set architec-

ture (ISA) [1]. To the best of our knowledge, this is the first

implementation of a barrel RISC-V processor made public.

The purpose of this processor is to concurrently control and

coordinate a set of accelerator processing elements.

A barrel processor exploits thread-level parallelism by

switching between different threads on each clock cycle.

However, unlike simultaneous multi-threading (SMT) that is

used in modern super-scalar processors, barrel processors do

not issue more than one instruction per clock cycle. Instead,

a single execution pipeline is shared by all threads. Barrel

processors have the advantages of 1) a simplified multi-stage

execution pipeline since data hazard detection and handling

logic are not needed, and 2) a small size in terms of circuit

resources since the main execution pipeline is shared between

threads. Each thread only needs separate circuitry for storage

elements that contains its state, i.e. data/address registers, the

program counter, and status registers. Such a small proces-

sor allows more circuit resources to be allocated to high-

performance accelerators.

The key advantage of a barrel processor is to provide

real-time threading guarantees. Indeed, it avoids stalls for

the processor and the accelerator. To keep up with the ac-

celerator’s demand for data, we either have to implement a

dedicated state machine (which without saying would not be

programmable and would offer less flexibility), or to use a

dedicated controller implemented in the form of a simple

processor for each individual processing element. We believe

a barrel processor is a nice solution that not only guarantees

deterministic thread execution on every clock cycle, but yet it

is small and programmable.

Introduced in 2011, RISC-V [2] is a free and open ISA.

Compared to other industry-grade ISAs, RISC-V is simple.

The entire base ISA (RV32I) is composed of only 47 in-

structions. On the other hand, RISC-V is extensible. Even for

the base ISA, there is a generous amount of opcode space

which gives room for customizing the core to one’s need.

Apart from the base ISA, RISC-V is available for different

data path widths and computation precision (e.g. long integer,

single-precision floating-point, etc). The RISC-V specification

Fig. 1. This figure shows how instructions are executed in a barrel processor.
Every 8 clock cycles, the program counter of the associated hart increments,
which allows the pipeline to be implemented without any data or control
hazard circuitry.

supports multiple hardware threads which are referred to as

”harts”. Each hart has its own register file and program

counter, and it executes an independent sequential instruction

stream [1].

In ordinary pipelined CPUs, the controller requires logic

to resolve data and control hazards. Consider Figure 1: A 5-

stage in-order CPU must resolve the read-after-write hazard

of 0x2000 and 0x2004 on register a0, either by forwarding

networks or by stalling 0x2004 until writeback 3 clock cycles

later. It must also resolve the control hazard at 0x2010 by

stalling until that branch is decided, or predict the result and

potentially roll back if the prediction was incorrect. In our pro-

posed RISC-V barrel processor, none of these cases need to be

handled, since under a round-robin scheduler, each hardware

thread returns to execution long enough after register/memory

writeback that no forwarding paths, prediction units or stalls

are required. The corresponding control logic can therefore be

trimmed away.

Using an embedded barrel processor based on the RISC-V

ISA attached to a multitude of accelerators is a simple way

to implement a flexible software-programmable control mech-

anism that is compact. In a follow-up publication, we will

present details on the implementation of such a processor.

The authors acknowledge support for this project from the

IBM AI Horizons Network, and from the NSERC COHESA

Strategic Research Network.

REFERENCES

[1] The RISC-V Instruction Set Manual, December 2019. [Online]. Available:
https://riscv.org/specifications/

[2] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for RISC-V,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, Aug 2014.

212

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00063

