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Related Works:

Regularization effect of quantization has been studied before:

1. Effect of Quantization on Accuracy Improvement.
2. Analytical Studies.

3. Using Quantization for its Regularization Effect.
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Related Works (2):

Our Contribution:

1. Studying relationship between quantization level and regularization effect.

2. Providing empirical study over different quantization levels and methods and different models,
datasets and tasks.
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Modeling Quantization as an Additive Noise (1):

Weight quantization can be modeled as weight perturbation:

f(z,wg) = f(z,w+9)

f(:l?, wq) . Is the predicted target of the network f parameterized by w

) : We assumed, quantization noise follows a normal distribution: § ~ N (0, o 1)
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Modeling Quantization as an Additive Noise (2):

For simplicity, we consider a regression problem:;
1 . )
L= m Zl |9 — vill3
1=

Applying a first-order Taylor approximation around the weights of the full precision model:

;o gé? \ 112
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Modeling Quantization as an Additive Noise (3):

New loss is penalized
by quantization level
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Experiments and Results (1):

We tested regularization effect of quantization over different:

DS Y

4{;\%

1. Models:

e Resnet18, K

2. Datasets:

esnet?20, K

esnetb0, Mobilenet V1, Yolo5n.

* CIFAR10, CIFAR100, VOC.

3. Quantization
e LSQ, PACT,

4. Quantization

methods:

DoReFa.

levels:

e 2 bits, 4 bits, 8 bits, FP32
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Experiments and Results (2):

For each test, we used different augmentations on original dataset:

Test Set Brightness | Contrast Defocus . ‘hlast_lc
Blur Iransform

Foo Frost Gaussian Gaussian Glass

5 Blur Noise Blur
Impl.l!sc , Jpeg‘ . Mollo.n Pixelate Saturate

Noise Compression Blur
Shot T ’ ] Speckle Zoom
Noise Snow Spatter Noise Blur
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Experiments and Results (3):

The value in each cell corresponds to difference between quantized and FP32 model:

3.60 4.20 3.40 3.80 3.50
3.90 3.10 3.70 -0.40 0.20
2.80 2.60 2.00 3.80 2.20
1.30 3.60 3.10 1.10 2.50
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Experiments and Results (3):

The value in each cell corresponds to difference between quantized and FP32 model:

3.50 Quantized model performed better
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Experiments and Results (3):

The value in each cell corresponds to difference between quantized and FP32 model:

-0.40 FP32 model performed better
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Experiments and Results (4) LSQ Quantization:

2 bits 4 bits 8 bits

1. Nine different experiments. -
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Experiments and Results (4) LSQ Quantization:

2 bits 4 bits 8 bits

1. Nine different experiments. -
N
2. Three different quantization levels. =
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Experiments and Results (4) LSQ Quantization:

2 bits 4 bits 8 bits
1. Nine different experiments. -
N
2. Three different quantization levels. =
2
D)
3. Three different models: = )
1. Resnet20: CIFAR10 00 5
O
2. Resnet18: CIFAR100 g 0
a4
3. YOLOvSNn: VOC -2
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Experiments and Results (4) LSQ Quantization:

2 bits 4 bits 8 bits
1. Nine different experiments. = SHEECHEEREE N 02 03 02 05 07
S 10.2 5.8' 8.6 [ 64 01 1.1 07
2. Three different quantization levels. o I | N
8 SRR 58 -63 -9 29 07 00 09 -0.
a4

3. Three different models: o2 I

1. Resnet20: CIFAR10

oo 06 00 05 07 03 27 31 23 24 12
§ 03 07 06048 03 26 13 27 22 -15
2. Resnet18: CIFAR100 7
82 19 07 03 06 -28 38 1.7 10 14 1.7
3. YOLOvSNn: VOC 27 06 08 32 -15 03 20 24 02 04
4. 8-bit models perform consistently better. 42 49 43 4.2
-
s o B s
Q -
C—]D 23 46 NN 40 48
> 26 -10 43 -35 -3.]
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Experiments and Results (5) Relative Improvement:

1. Relative improvement score:

100 — fval

Error Improvement= lo *100
P 8 100 — gval )
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Experiments and Results (5) Relative Improvement:

1. Relative improvement score.

2. 4-bit and 8-bit models have better generalization.

DS L

Quantization Avg Accuracy Relative Error
Level Augmented Data | Improvement Eq.5
2 bits 79.17
Resnet2() 4 bits 83.94
Cifarl0 8 bits 84.07
FP32 82.80 0.00
2 bits 49.43
Resnet18 4 bits 51.76
Cifar100 8 bits 53.05
FP32 50.40 0.00
2 bits 14.66
YOLOvV5n 4 bits 24.90
VOC 8 bits 30.34
FP32 28.78 0.00
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Conclusion:

1. We formalized quantization noise and study how it effects training.
2. We showed how quantization level is correlated to the regularization term.

3. We provided a extensive list of experiments where we tested our hypothesis on
different models, tasks, quantization methods and levels.

4. Based on our study, we propose 8-bit quantization provides a reliable form of
regularization in different vision tasks and models.
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